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Abstract. The magnon spectrum of the low-temperature antiferromagnetic commensurate
phase in the monoclinic structure of the tenorite (CuO) is investigated from the theoretical
point view. The energy operator consists of the exchange interactions, the magnetic anisotropy
energy and the Zeeman energy. The primitive cell of the antiferromagnetic phase contains eight
copper ions. In zero magnetic field the spectrum consists of four doubly degenerate branches:
two acoustic and two optical branches. The magnon energy is determined by the fourth-order
equation at an arbitrary quasi-impulse direction. An attempt was made to find the exchange
interaction parameters and anisotropy energy by comparison of the theoretical expressions with
the experimental dispersion curves for the crystallographic direction [010]. Four versions for
the set of exchange parameters were obtained. All exchange integrals are negative in all cases.
The exchange interactions in tlie, ¢) plane noticeably exceed the others.

1. Introduction

In the last few years, interest in the study of the physical properties of tenorite (CuO) has
arisen in connection with the problem of high-temperature superconductivity. Although the
compound CuO is not a superconductor itself, some features of its crystal structure mean
that tenorite is related to the copper-containing high-temperature superconductors.

The interest in CuO is even stronger because of the indication of the existence of
low-dimensional magnetism and antiferromagnetic ordering in it. .

The crystal structure of tenorite was firstly determined by Tumell [1] and Asbrink
and Norby [2].

It has been established also that CuO is antiferromagnetic. Foes@h[3], Yang et
al [4,5] Ain et al [6] and Brownet al [10] have investigated the magnetic structure of
tenorite.

It turned out that the tenorite antiferromagnetism is rather non-trivial. At temperatures
below about 213 K, commensurate antiferromagnetic ordering is observed. Above this
temperature and up to about 230 K an incommensurate antiferromagnetic phase arises.
Further, at higher temperatures, the paramagnetic susceptibility does not follow the Curie—
Weiss law but rises with increasing temperature and passes through a wide maximum at
about 550 K [7, 8]. Such behaviour is typical of low-dimensional magnets.

Ain et al [9] investigated the spin-wave excitations at low temperatures and obtained
experimental dispersion curves for different crystallographic directions. In the present paper
we also study the spin-wave spectrum from the theoretical point of view in the Heisenberg
exchange approximation, taking into account the anisotropy and Zeeman energies.
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2. Information on the crystal and magnetic structure

The compound CuO has a crystal structure with the monoclinic space group C2/c (No. 15).
The lattice parameters are [2]= 4.6837A, b = 3.4226A, ¢ = 5.1288A and 8 = 99.54°.

In the elementary cell containing four CuO ‘molecules’ the copper ions occupy ¢he 4
positions 1 (1/4, 1/4, 0), 2 (3/4, 3/4, 0), 3 (1/4, 3/4, 1/2) and 4 (3/4, 1/4, 1/2), and the
oxygen ions occupy theedpositions 50, y, 1/4), 6 (1/2,1/2+ y,1/4), 7 (O, y, 3/4) and
8(1/2,1/2 -y, 3/4), wherey = 0.4184.

On the whole the crystal structure could be described in the following manner [2]. The
structure elements are Cy@arallelograms. These parallelograms form chains by the side-
sharing edges. Such chains traverse the crystal along the [110] #@dditections. Each
chain of [110] type is linked with two neighbouring chains ofl(] by corner sharing. As
a consequence, two types of the copper ion site arise: Cu(l) 6] Hirection and Cu(2)
for the [110] direction.

The copper ions are carriers of the magnetic moments. At temperatures lower than about
213 K antiferromagnetic ordering of the following type arises. There are two sublattices
with right (plus) and left (minus) spins. The magnetic configuration is such that a laminar
structure is realized, in which the alternation of two plus layers with two minus layers takes
place. The ferromagnetic layers lay in planeglafa + c¢) type. The antiferromagnetic axis
is directed along the [010] (axis [b]).

For the magnetic structure described, the primitive cell contains eight copper ions as a
basis, with their coordinates

g1=0 g2=(a+b)/2 g3=(a+c)/2 ga=(2a+b+c)/2

2.1
gs=a g6 = (Ba+b)/2 g7=@Ba+c0)/2 gs= (4a+b+c)/2. (2.1)

The primitive cell is a parallelepiped based on the primitive translation vectors
t, = 2a to,="> tz3=a+c. (2.2)

The vectorsg:, g2, g3 and g4 relate to Cu ions with the right (plus) momentum
orientation, and the vectorgs, gs, g; and gs relate to the left (minus) orientation. The
vectorsgi, g2, gs and gg give the Cu(1) positions, and the vectars g4, g7 and gs give
the Cu(2) positions. The low-temperature antiferromagnetic primitive cell is displayed in
figure 1.

For further calculations it is convenient to introduce the rectangular coordinate system
x1, x2, x3(x, ¥, z) in which the axis §] coincides withx,, and the axisf] coincides with
x3 (figure 2).

3. Model Hamiltonian secular equation

We assume that the magnetic behaviour of the CuO crystal is determined by Heisenberg
isotropic exchange interaction of localized copper ion sgity the anisotropy energy and
Zeeman energy in external magnetic field. Thus for the crystal Hamiltonian we have

H=H" + B 4 gZem, (3.2)
The exchange energy operator has the form

A" = =% %" I(m.n)S(m)S(n) (3.2)
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Figure 1. The primitive cell of the low-temperature antiferromagnetic phase in CuO. Only copper
ions are shown. Numbers 1-8 enumerate the base ions with the veggtgescorrespondingly.

The signs+ and — show the momentum directions. lons Cu(1) are situated in the lower and
upper(a, b) planes. lons Cu(2) are situated in the middied) plane. The primitive cell has
eight copper ions.

a.x,

Figure 2. The crystallographic coordinate systemb, ¢ and rectangular coordinate system
x1, x2, x3(x, y, z). S is the moment of any sublattice, ai¥ is the projection ofS on the(a, ¢)
plane. 6 is the polar angle, and is the azimuthal angle.

where the summation goes over copper sublattice sites. The exchange infégnala)
depend upon not only the vector differende = m — n but also the type of the copper
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ions Cu(1) and Cu(2). Thus
I(m,n) =I1(A,s,,s,) SmySp=1,2 (3.3)

where the numbers, ands, belong correspondingly to the vectars andn and determine
the copper ion type Cu(1y = 1) and Cu(2) § = 2).

The anisotropy energfl“‘), which is responsible for the orientation of moments along
or against the axish], has the form

1 2
FI(A) = _gAH«BHA . <Zs(m) - ZS(m)) (34)

where the first summation goes over the first magnetic sublattice and the second summation
goes over the second sublattigg, is the effectiveg-factor andu s is the Bohr magneton.
The anisotropy fieldH 4 is directed along the axi$] for the first magnetic sublattice and
against the axisH] for the second magnetic sublattice.

The Zeeman energy has the form

| (Zeem) _ —gupS-H (3.5)

whereyg is the g-factor andH is the external magnetic field.
For further consideration it is convenient to introduce the matrix

Lun(@) =) _ exp(—iq - A)(A; sn, 528,14, mn=12..,8 (3.6)
A
where the numbers,,, s,(= 1, 2) relate correspondingly to the vectogs, and g, from

equations (2.1).
The matrix (3.6) has the block form

D @
Lun (@) = [1(2) 1(1)] (3.7)
whereID and 7@ are 4x 4 matrices:
a b ¢ d f b* g d*
b* a d* c b f d g
@ _ 2 _
== c d a e == g dt f e (3.8)
d* ¢ e* a d g e f
a*=a F=c ff=f =g (3.9
=1 b=1 =1 d=1
a = I11(q) 12(q) c = I13(q) 14(q) (3.10)
e = I34(q) f=Ils(@ g = h(q).

Introducing the second quantization operators of the credtioand annihilation of
magnons we obtain the Hamiltonian in the form

8 8 8
A=A+ (Z D bl @by (@ + YD Y (@b (@b (—q)
k=1 gq

k=11=1 q
8 8
=33 S @b @by (@) + Con ]) (311)
k=11=1 gq
The following designations are introduced into equation (3.10):
A = 4N S{I[sin61 Sind, cog¢p1 — ¢2) + COSH; COSH,] /2
—ha(CcOSH; — c0s8,) — hi(SiNO; COSPy + SiNG, COSH,)
—h(Sinfy sing, + sind, sing,) — h3(coshy, + coshy)} (3.12)
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where N is the number of magnetic cells in a crystal and
I=-48Y I(m,n)=-45) 1(0.n). (3.13)

Herem andn belong to two different magnetic sublatticEBhe angle®;, ¢; and6,, ¢o,
are the polar and azimuthal angles of the quantization axes for the first and second magnetic
sublattices, respectively (see figure 2)

hA = gA,LLBHA (314)
h,' = g/,LBH,' i = 1, 2, 3 (315)

4 8
Wy = S( Z 112 (0) + [Sin6y SiN62 COS(p1 — ¢1) + COSH1 COSH,] Z Iim (0)>
m=5
4+ cosOiha(k)/2 + (hySiNG; cOSPy + ho SiNG; Singy, + hz cosH;) /2 (3.16)

m=1

where
61, atk=1234
b =10 (3.17)
092,¢2 atk=5,6,7,8
+hy atk=1,23,4
hatk) = 3.18
4 () {—h,, atk =5,6,7,8 (3.18)
0 &,/
v (q) = —S§ |:CDVI(2)* 0 :| =[v]. (3.19)
Here
®, = [cos(¢p1 — ¢2)(1 — cOSH; COSH,) — Sinby SiNG, + i (COSH; — €OSH,) SiN(¢r — P2)]/2
(3.20)
D q;A[(Z)iI
=S| . = [A] (3.21)
ki |:q>k[(2) 7O
where
®; = [cos(p1 — ¢2) (1 + COSH1 €OSH,) + Sinby Sinb, — 1(COSH; + €COSH2) SiN(pr — P2)]/2.
(3.22)

The equilibrium angle®;, ¢1, 62, ¢, are determined by the conditions of extremum of
the ground-state energy:
AN/36L = OA/06, = dA/dp1 = DA /I = O. (3.23)
The equations of motion for second quantization operators lead to the following equation
for the magnon energy:

Ay AY
det[A; AZJ =0 (3.24)
where

Ar= ()l — @) TEL] + (9 7HA]

Ap= (7Pl Ag= (O Hul+ @) TEL] + ()T
Here the superscripts of the matrices have the following meanirgsneans Hermitian
conjugation,~ means transpositios, means complex conjugation and

Mg) = M(—q). (3.26)

The matrix [4] is a diagonal matrix in which the first four elements are= ©, = uz =

s and the subsequent four elements ake= ug = u7 = ug from the equations (3.16)—
(3.18).

(3.25)



1790 B V Karpenko et al

4. The case of zero magnetic field

In zero magnetic field, equations (3.23) give
6, =0 O, =1 1 — ¢p = 0. (4.1)
For the ground-state energy we have
A = —2NS(I + 4hy) (4.2)
and the minimum condition ol leads to the inequality
I +4hy > 0. (4.3)

For the magnon spectrum we have

@, =0 o, =1 (4.4)
(1] = n[1] (4.5)
where
4 8 h
o= S(lelm(O) - 2511,,,(0)> + 7/‘ (4.6)
Equation (3.24) reduces to
det[’; g} ~0 4.7)
A={RHTE- O W +1YT @dx49 (4.8)
B =[19] (4 x 4) (4.9)
C={—297E - () 1u)[1] +[1"] (4 x 4). (4.10)

Equation (4.7) is of eighth order and gives four doubly degenerate branches of the
magnon spectrum. It is possible to give the observable formulae for the magnon energies
only if we consider the special directions of the magnon quasi-impulse vector

As an example we consider the case when the vegtgrdirected along theb] axis.

In this case, equation (4.7) gives

E12=S@Y{tr+ 1 + p2+ p3 F (1 — 15 + p2 — p3)* + 4tz + p1[]/3? (4.11)
Ess= SQY3{t1+ 17 — pa— ps F[(t1 — 17 + p2+ p3)? + 4t — p1 7|74 (4.12)
where

n=h?— 242 b2 4% —g? tr = 2bh — 2fb* + 2d(c — g) (4.13)
p1=2hc —2fg +2d(b — b*) p2=2d(h — f)+ 2b*c — 2bg. '

(The equalitye = b* is fulfilled in this case.) We introduced in equation (4.13) the new
designation
h=a—un/S (4.14)

where u is determined by equation (4.6). In equations (4.11) and (4 A2}, correspond
to the upper sign and’, 4 correspond to the lower sign.
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5. Comparison with experiment

Ain et al [9] have found the spin-wave dispersion curves by means of inelastic neutron
scattering for three crystallographic directions [101])1] and [010]. In the present paper

we make an attempt to find the exchange parameter magnitudes by comparison of the
theoretical expressions obtained above with the experimental dispersion curves.

It is difficult to say beforehand how many interacting neighbours must be taken into
account in order to obtain good agreement between the theory and experiment. Here we
take the interactions with the neighbours up to twelfth order. Maybe, this will be sufficient
as the following results will show.

Table 1 presents the neighbour coordinates, distances and corresponding exchange
parameters. The lower index shows the coordination sphere number, and the upper left
index indicates the exchange parameters inside the same sphere if such distinction exists.
In all, 38 neighbours are taken into account.

Table 1. Table of neighbours and interactions. The first column gives the neighbourhood order
N (coordination sphere number). The second column gives the numbércopper ions in

the corresponding sphere. The third column gives the distdnckcoordination sphere ions
from the central copper ion. The fourth column gives the radius veft@f the copper ion.

The fifth column gives the ion type Cu(1) or Cu(2) in the pair of interactions ions. The sixth
column gives the parameters of interactibrof coordination sphere ions with the central ion.
The seventh column shows parallelism (p) or antiparallelism (a) of magnetic moments of central
ion and its neighbour.

N n dA A Cu-Cu I p,a

1 4 29005 +(a+b)/2 Cu(1)-Cu(1) i pa

Cu(2)-Cu(2) L pa

+(a—b)/2 Cu(1)-Cu(1) ’2n pa

Cu(2)-Cu(2) n  pa

2 4 30830 +£(b+e)/2 Cu(1)-Cu(2) I p,a
3 2 31733 *(a+0¢)/2 Cu(1)-Cu(2) I p
4 2 34226 +b Cu(1)-Cu(1), Cu(2)-Cu(2) I, p
5 2 37485 +(a—c)/2 Cu(1)-Cu(2) Is a
6 4 46673 +(a£2b+c)/2 Cu(l)-Cu(2) Is p
7 2 46837 +=a Cu(1)-Cu(1), Cu(2)-Cu(2) Iy a
8 4 50759 +(a+£2b—c)/2 Cu(l)-Cu(2) 4 a
9 2 51288 +c Cu(1)-Cu(1), Cu(2)-Cu(2) Iy a

10 4 52403 +(a+b+c¢)/2 Cu(l)-Cu(2) Lo pa

11 4 55440 +(a+b+2c)/2 Cu(1l)-Cu(l) 1, pa

Cu(2)-Cu(2) 21 pa

+(a—b+2¢)/2 Cu(l)-Cu(l) ’I1 p.a

Cu(2)-Cu(2) i1 pa

12 4 56428 =(a+3b)/2 Cu(1)-Cu(1) 11, pa

Cu(2)-Cu(2) 21, pa

+(a —3b)/2 Cu(1)-Cu(1) ’Ii,  p,a

Cu(2)-Cu(2) I, pa

We treated the experimental curves [9] for the [010] direction with the help of the
theoretical expressions from equations (4.11) and (4.12). When doing this, two difficulties
arose. First, for directions [101],101] and [010] we can see only two experimental
curves: an acoustic curve and optical curve. However, we have, as was said above, four
theoretical curves: two acoustic and two optic ones. Secondly, the existence of a large
number of unknown exchange parameters raises unsurmountable mathematical problems.
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The first problem was solved by assuming that the single acoustic experimental branch and
single optic experimental branch each represent two merged indistinguishable branches.
Automatically the second problem is removed: the number of unknown parameters
diminishes.

So, equating the expressions for the two acoustic bran@hies= E3) and two optical
brancheg E; = E4) in equations (4.11) and (4.12), we obtain the relations

n+2n;=0 L+ =0

o+ 2h,=0 I+ 11p=0. &
Thus, the energies of two branches become
E12() = (a1.2 + b1 sinfa + cppsint a)Y/? (5.2)
where
a1 = (28)%(hs/2S)(—4ls — 417 — 8Ig — 4lg + 4/ 2S)
by = (28)%4[(14 + 21 — 2Ig)(—4ls — 4l — 4lg — 4lg + h 4 /2S)
+ (I3 + 2Ig + 2Ig)h 4 /25)]
c1 = (28)216(14 + 21s — 21Ig) (14 + 215 + 2Ig) 5.3)

ar = (28)%(413 — Als + 8l — 8Ig + h 4 /2S) (413 + 8l — 417 — 4lg + h 4 /2S)
by = (28)%4[(I4 — 2Ig + 2I5) (413 + 8ls — A7 — Alg + h2/2S)

+ (I3 — 21 — 2Ig) (413 — 4l + 815 — 8lg + h /25)]
c2 = (28)%16(14 — 21 + 2Ig) (14 — 21 — 2Ig).

The magnituder changes from-n/2 to+n /2,0 = 7, whereg is reduced wavevector
(q=27(0,¢,0)/12; 12 = b; =05 < ¢ < 0.5).

The experimental optical branch is resolved well in the first six points (see figure 3),
but further it almost merges with the acoustic branch. For treating the optical branch we
chose the six above-mentioned points and took the seventh point on the Brillouin zone edge
coinciding with the point on the acoustic curve. If one treats the optical curve only with
the use of well resolved initial six points, then the coefficienhas a very uncertain value
because of the small changedn We took 18 experimental points for the acoustic curve.
The least-squares method gives the following values:

a; = 8.3424 meV a, = 48322 me\?
b1 = 66170 me\? by, = 66032 me\? (5.4)
c1 = —23946 me\f ¢y = —28239 me\f.

Figure 3 shows the curves calculated from equation (5.2) with the parameters from
equations (5.4) together with the experimental points from [9].

So, we havesix equations (5.3) fosevenunknown parameterss, I, Is, Is, I7 + Io,
Ig andh 4. With the use of data from the paper by Konelbal [11] on the magnetization
and susceptibility in strong magnetic fields of tenorite powder, one can make the numerical
estimation

ha/l =104 (5.5)

(Of course, equation (5.5) is approximate.) We use equation (5.5) as the missing seventh
equation. With the help of equations (5.3)—(5.5) we obtain the exchange parameter values
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Figure 3. Dispersion curves for [010] directions® , experimental data from [9]; —,
calculated from equations (5.2).

which are represented in table 2. As the equation system is non-linear, we have four
solutions. These solutions must be compatible with the inequality

1 2
Q=>10,n)—> 10,n)>0 (5.6)

where the first summation is over its own magnetic sublattice and the second summation is
over another magnetic sublattice. In our approximation the inequality (5.6) takes the form

O=L+14—I5+2lg—I; — 2Ig — Ig > 0. (57)

Table 2. Table of exchange parameter values. The first column gives the solution number.
The two last columns give the calculated values of the paramagnetic tempe@turnd
the antiferromagnetic ordering temperatdig for S = 1/2. In all cases/ = 3352 K and

ha =10741.

—28I3 —=2SI, —-25Is —2S5Ig —2S(I7+ I9) —2SIg Oy N
Solution  (K) (K) (K) (K) (K) (K) K K
1 199 8 324 55 329 92 —1155 521
2 657 8 577 55 76 92 —1613 63
3 62 110 577 4 76 92 —1019 657
4 521 110 324 4 329 92 1477 199

All four solutions, represented in table 2, satisfy the condition (5.7). In all cases
I = —8S(s+ I7 + 2Ig + Ig) = 3352 K (5.8)
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In table 2, the paramagneticedl temperatur® is given. O is calculated from the
formulae

Oy = 2S(S+1) Z 1(0, n) (5.9)

which in our approximation takes the form
On = 385(5 + D(2Is + 214 + 215 + 4l + 217 + 4lg + 2I9). (5.10)

Also, in table 2 the temperatur@y of antiferromagnetic ordering are represented. The
Ty-values are calculated in the molecular-field approximation:

Ty = 3S(S+1)Q (5.11)

where Q is given in equations (5.6) and (5.7). Equation (5.11) may be useless for systems
with anisotropic exchange. Nevertheless, we pregentcalculated from equation (5.11),
for various orientations.

6. Discussion

So, we have obtained the equations for spin-wave energies in an arbitrary external magnetic
field. Generally, there are eight spectrum branches. In zero magnetic field, four branches
are realized: two acoustic and two optical branches, each being doubly degenerate.

At zero wavevector, none of the four branch energies takes a zero value. However, the
natures of these energy gaps are different for the acoustic and optical branches. Therefore the
acoustic and optical gaps have quite different numerical values. For the acoustic branches,
the non-zero gaps are caused by the existence of the anisotropy field (besides, of course,
exchange interactions) and go to zero as the anisotropy disappears in accordance with the
Goldstone theorem. As for optical branches, the gap is determined dominantly by the
exchange parameters only and the role of anisotropy is negligible here.

We made an attempt to find the exchange parameters values in CuO by theoretical
analysis of experimental dispersion curves [9] for the [010] directibihen doing this, the
following essential assumption was made: two observed experimental curves represent two
acoustic and two optical branches, which are unresolved and merged in pairs.

Four possible versions for numerical values of exchange parameters are represented in
table 2. In all four cases all exchange integrals are negative. In solution 3 the exchange
parameterls is the greatest, which is in accordance with the widespread point of view.
However, in the remaining three cases the largest interactions are Bitberd7 + Io.

Generally, as displayed in table 2, the interactidgs/ls, I7 + Ig in the (a, ¢) plane
summarily exceed the interplane interactidpsls and Ig.

In order to give preference to one of the four possible solutions in table 2 it is necessary
to consider some additional data. We presented in table 2 the magnitydemnd Ty,
calculated from equations (5.10) and (5.11). However, this does not give much information.
The experimental data f@y are absent. As fofy, the valueTy = 199 K in solution 4 is
nearest to experiment but, as stated above, equation (5.11) is itself unreliable for our case.

In conclusion let us discuss the problem of the necessary number of neighbours. We
took into account 12 coordination spheres, i.e. 38 neighbours at all. Is this too many or too
few? From equations (5.3) one can see that the coefficier@sdc, are essentiallpositive
magnitudes if we neglect the paramefgr On the other hand, the least-squares method
(used for treating the experimental curve) gives quite unambiguoushethetivesign forc;
andc;,. So,taking into account the interactions with neighbours from fewer than only eight
coordination spheres cannot give agreement between theory and experiment in principle.
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Therefore, at least eight coordination spheres are needed to describe the dispersion curves
for the [010 direction. We took into account more: 12. However, it turned out that this is
almost the same as taking into account only eight spheres. Really, the interactions with tenth,
eleventh and twelfth spheres are absent in the final formulae and, also, from equation (5.1)
follow most probably the equalitiego = 711 = O (besides the explicit equality;, = 0).

As for the parametefy, it enters the result only in the combinatign+ Iy, i.e. there
is a good probability thalg gives only a ‘correction’ tal;. So, it seems to be sufficient to
take eight (or possibly nine) coordination spheres.

Attention is drawn to the fact that the interactiorfs and I, of the first and second
order, respectively, turned out to be negligibly small.

The authors are aware that the scalar approximation fogfaetor and the use of the
Heisenberg type of exchange interaction may be serious limitations of the model.
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